1 Find the exact value of $\int_{0}^{2} \sqrt{1+4 x} \mathrm{~d} x$, showing your working.

Fig. 8 shows the line $y=x$ and parts of the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$, where

$$
\mathrm{f}(x)=\mathrm{e}^{x-1}, \quad \mathrm{~g}(x)=1+\ln x
$$

The curves intersect the axes at the points A and B , as shown. The curves and the line $y=x$ meet at the point C .

Fig. 8
(i) Find the exact coordinates of A and B. Verify that the coordinates of C are $(1,1)$.
(ii) Prove algebraically that $\mathrm{g}(x)$ is the inverse of $\mathrm{f}(x)$.
(iii) Evaluate $\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x$, giving your answer in terms of e .
(iv) Use integration by parts to find $\int \ln x \mathrm{~d} x$.

Hence show that $\int_{\mathrm{e}^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x=\frac{1}{\mathrm{e}}$.
(v) Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .

3 A curve is defined by the equation $y=2 x \ln (1+x)$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and hence verify that the origin is a stationary point of the curve.
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and use this to verify that the origin is a minimum point.
(iii) Using the substitution $u=1+x$, show that $\int \frac{x^{2}}{1+x} \mathrm{~d} x=\int\left(u-2+\frac{1}{u}\right) \mathrm{d} u$.

$$
\begin{equation*}
\text { Hence evaluate } \int_{0}^{1} \frac{x^{2}}{1+x} \mathrm{~d} x \text {, giving your answer in an exact form. } \tag{6}
\end{equation*}
$$

(iv) Using integration by parts and your answer to part (iii), evaluate $\int_{0}^{1} 2 x \ln (1+x) \mathrm{d} x$.

4 Find $\int x \mathrm{e}^{3 x} \mathrm{~d} x$.

5 Show that $\int_{1}^{4} \frac{x}{x^{2}+2} \mathrm{~d} x=\frac{1}{2} \ln 6$.

